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We consider the model of the directed polymer in a random medium of dimension 1+3, and investigate its
multifractal properties at the localization-delocalization transition. In close analogy with models of the quan-
tum Anderson localization transition, where the multifractality of critical wavefunctions is well established, we
analyze the statistics of the position weights wL�r�� of the endpoint of the polymer of length L via the moments
Yq�L�=�r� �wL�r���q. We measure the generalized exponents ��q� and �̃�q� governing the decay of the typical
values Yq

typ�L�=eln Yq�L��L−��q� and disorder-averaged values Yq�L��L−�̃�q�, respectively. To understand the
difference between these exponents, ��q�� �̃�q� above some threshold q�qc�2, we compute the probability
distributions of y=Yq�L� /Yq

typ�L� over the samples: We find that these distributions becomes scale invariant

with a power-law tail 1 /y1+xq. These results thus correspond to the Evers-Mirlin scenario �Phys. Rev. Lett. 84,
3690 �2000�� for the statistics of inverse participation ratios at the Anderson localization transitions. Finally, the
finite-size scaling analysis in the critical region yields the correlation length exponent ��2.
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I. INTRODUCTION

The notion of multifractals is now important in various
areas of physics �see, for instance �1–7� and references
therein�. For classical systems with frozen disorder of inter-
est here, the idea that multifractality is present at criticality
has been mostly investigated for correlation functions in
two-dimensional diluted ferromagnets �8–12�, spin-glasses
and random field spin systems �13–15�. For disordered quan-
tum spin-chains, the statistics of critical correlation functions
is described by “multiscaling,” which is even stronger than
multifractality �16�. For quantum localization models, the
multifractality of the critical wavefunction shows up through
the statistics of inverse participation ratios �I.P.R.s� �17,18�.
Many results are now available for the Anderson localization
transition in d=3 �19–22�, the integer quantum Hall transi-
tion �23,24� Dirac fermions in a random magnetic field �25�,
and power-law random banded matrices �26�. Connections
have been also established with the scaling properties of the
correlation functions �27� and with the time evolution of
wave packets �28�. More recently, it was realized that typical
and disorder-averaged I.P.R.s can actually lead to two differ-
ent multifractal spectra as a consequence of the broadness of
their probability distributions �21,26,29�.

In this paper, we consider the localization-delocalization
transition of the directed polymer in a random medium of
dimension 1+3 �see the review �30� and references therein�,
to investigate whether some multifractality in present at criti-
cality, in analogy with the quantum localization models
quoted above. Note that at the level of one-loop
renormalization-group calculation in dimension d=2+�,
multifractality is already present both for the directed poly-
mer �31� and for Anderson localization �17�.

The paper is organized as follows. In Sec. II, we introduce
the directed polymer model and the observables displaying
multifractal behavior at criticality. We then describe our nu-
merical results concerning the generalized dimensions D�q�
and D̃�q� that govern typical and averaged values �Sec. III�,

the singularity spectrum �Sec. IV�, and the probability distri-
butions over the samples �Sec. V�. Finally, we present in Sec.
VI the finite-size scaling analysis in the critical region.
Section VII contains our conclusions.

II. MODELS AND OBSERVABLES

A. Model definition

The random bond directed polymer model �30� is defined
by the following recursion relation for the partition function
on the cubic lattice in d=3

Zt+1�r�� = �
j=1

2d

e−��t�r�+e� j,r��Zt�r� + e� j� . �1�

The bond energies �t�r�+e� j ,r�� are random independent vari-
ables drawn from the Gaussian distribution

���� =
1

�2�
e−�2/2. �2�

In this paper, we consider the following boundary conditions.

The first monomer is fixed at r�=0� , i.e., the initial condition
of the recurrence of Eq. �1� reads

Zt=0�r�� = 	r�,0� . �3�

The last monomer is free, i.e., the full partition function of
the polymer of length L is then obtained by summing over all
possible positions r� at t=L

ZL
tot = �

r�
ZL�r�� . �4�

The phase diagram of this directed polymer model as a
function of space dimension d is the following �30�. In di-
mension d
2, there is no free phase, i.e., any initial disorder
drives the polymer into a strong disorder phase, where the
order parameter is an “overlap” �32–36�. In dimension, d
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�2, there exists a phase transition between the low tempera-
ture disorder dominated phase and a free phase at high tem-
perature �37–39�. This phase transition has been studied ex-
actly on a Cayley tree �32�. In finite dimensions, bounds on
the critical temperature Tc have been derived �38,40,41�:
T0�d�
Tc
T2�d�. The upper bound T2�d� corresponds

to the temperature above which the ratio ZL
2 / �ZL�2 remains

finite as L→�. The lower bound T0 corresponds to the tem-
perature below which the annealed entropy becomes nega-
tive. On the Cayley tree, the critical temperature Tc coincides
with T0 �32�. In finite dimensions however, we have argued
in �42� that Tc coincides with T2, and our recent numerical
simulations �43� are in agreement with the numerical value
given in �40� for T2�d=3�:

Tc = T2�d = 3� = 0.790. �5�

The numerical results given below have been obtained
using polymers of various lengths L, with corresponding
numbers ns�L� of disordered samples with

L = 6,12,18,24,36,48,60,72,84,96, �6�

ns�L�

=108,107,2.106,8.105,2.105,5.104,3.104,2.104,4.104,2.104.

�7�

In the following, Ā denotes the average of A over the

disorder samples. We also define ��A�2=A2− Ā2.

B. Notion of multifractal statistics at criticality

In this paper, we will focus on the statistical properties of
the weights

wL�r�� =
ZL�r��
ZL

tot �8�

normalized to �Eq. �4��

�
r�

wL�r�� = 1 �9�

and study whether they present some multifractal properties
at criticality. We thus consider the following moments of
arbitrary order q

Yq�L� = �
r�

wL
q�r�� �10�

that are the dynamical analogs of the inverse participation
ratios �I.P.R.s� in quantum localization models �26�

Pq�L� = �
Ld

ddr�	�r��	2q. �11�

As a consequence of the normalization of Eq. �9�, one has
the identity Yq=1�L�=1. The localization/delocalization tran-
sition can be characterized by the asymptotic behavior in the
limit L→� of the Yq�L� for q�1. In the localized phase T
�Tc these moments Yq�L� converge to finite values

Yq�L = �� � 0 for T � Tc. �12�

In the delocalized phase, the spreading of the polymer in-
volves the Brownian exponent �=1/2, and, space being of
dimension d=3, the decay of the moments follows the scal-
ing

Yq�L� 
 L−�q−1�d� = L−�q−1��3/2� for T � Tc. �13�

Exactly at criticality, the typical decay of the Yq�L� defines a
series of generalized exponents ��q�= �q−1�D�q�

Yq
typ�L� � 	eln Yq�L�	T=Tc


 L−��q� = L−�q−1�D�q�. �14�

The notion of multifractality corresponds to the case where
D�q� depends on q, whereas monofractality corresponds to
D�q�=cst as in Eq. �13�. The exponents D�q� represent gen-
eralized dimensions �1�: D�0� represent the dimension of the
support of the measure, here it is simply given by the space
dimension D�0�=d=3; D�1� is usually called the information
dimension �1�, since it describes the behavior of the “infor-
mation” entropy

sL � − �
r�

wL�r��ln wL�r�� = 	 − �qYq�L�	q=1 
 D�1�ln L .

�15�

Finally D�2� is called the correlation dimension �1� and de-
scribes the decay of

Y2
typ�L� � 	eln Y2�L�	T=Tc


 L−D�2�. �16�

In the multifractal formalism, the singularity spectrum
f��� is given by the Legendre transform of ��q� �1� via the
standard formulas

q = f���� , �17�

��q� = �q − f��� . �18�

The physical meaning of f��� is that the number NL��� of
points r� where the weight wL�r�� scales as L−� typically be-
haves as

NL��� � Lf���. �19�

So the Legendre transform of Eq. �18� corresponds to the
saddle-point calculus in � of the following expression:

Yq
typ�L� � � d�Lf���L−q�. �20�

The general properties of the singularity spectrum f��� are as
follows �1�: It is positive f����0 on an interval ��min,�max�
where �min=D�q= +�� is the minimal singularity exponent
and �max=D�q=−�� is the maximal singularity exponent. It
is concave f�����0. It has a single maximum at some value
�0 where f��0�=D�q=0� �so here f��0�=3�, and contains the
point �1= f��1�=D�1�.

Following �1�, many authors consider that the singularity
spectrum has a meaning only for f����0 �19,20,23–25�.
However, when multifractality arises in random systems,
disorder-averaged values may involve other generalized ex-

CÉCILE MONTHUS AND THOMAS GAREL PHYSICAL REVIEW E 75, 051122 �2007�

051122-2



ponents �44–47� than the typical values �see Eq. �14��. In
quantum localization transitions, these exponents were de-

noted by �̃�q�= �q−1�D̃�q� in �26,29�

	Yq�L�	T=Tc

 L−�̃�q� = L−�q−1�D̃�q�. �21�

For these disorder averaged values, the corresponding singu-

larity spectrum f̃��� may become negative f̃����0
�26,29,44–47� to describe rare events �cf. Eq. �19��. The dif-
ference between the two generalized exponents sets D�q� and

D̃�q� associated to typical and averaged values has for origin
the broad distributions at criticality �21,26� as we now de-
scribe.

C. Probability distributions of the Yq„L…

The scenario proposed in �21,26� in the context of quan-
tum localization models is as follows: The probability distri-
bution of the logarithm of the inverse participation ratios of
Eq. �11� becomes scale invariant around its typical value
�21,26�, i.e.,

ln Pq�L� = ln Pq�L� + u , �22�

where u remains a random variable of order O�1� in the limit
L→�. According to �26� the probability distribution GL�u�
generically develops an exponential tail

G��u� 

u→�

e−xqu. �23�

As a consequence, the ratio y= Pq�L� / Pq
typ�L�=eu with

respect to the typical value Pq
typ�L�=eln Pq�L� presents the

power-law decay

��y �
Pq�L�

Pq
typ�L��y→�

1

y1+xq
. �24�

The conclusions of �21,26� are then as follows: For q small
enough q�qc, the exponent satisfies xq�1, and the corre-

sponding generalized dimensions coincide D̃�q�=D�q�.
However, for larger values q�qc, the exponent x�q� may
become smaller x�q��1, and then the corresponding gener-

alized dimensions differ D̃�q��D�q�: The decay of the av-
eraged value Pq�L� is then determined by the finite-size cut-
off of the power-law tail. In this case, the averaged values are
not representative but are governed by rare events.

In this paper, we show that this scenario for the I.P.R.’s
statistics at Anderson transitions describes well our data for
the directed polymer at criticality.

III. RESULTS FOR THE GENERALIZED EXPONENTS

D„q… and D̃„q…

We show on Fig. 1�a� our results for the generalized ex-

ponents D�q� and D̃�q� governing the decay of typical and
disorder averaged values �Eqs. �14� and �21��. In agreement
with the scenario proposed in �21,26� for Anderson transi-
tions, we find that there exists a threshold qc, of order qc
�2 here, such that

D�q� = D̃�q� for q � qc, �25�

D�q� � D̃�q� for q � qc. �26�

In particular, for q=1, the information dimension of Eq. �15�
is

D�1� = D̃�1� � 1.5 �27�

and corresponds to the monofractal dimension DT�Tc
�q�

=3/2 of the delocalized phase �see Eq. �13��, as numerically
checked on Fig. 1�b�.

For q=2, the correlation dimension D�2� defined in Eq.
�16� is found to be of order

D�2� � D̃�2� � 1.3. �28�

For q�3, the values for D�q� and D̃�q� are clearly different,
in particular for q=3

D�3� � 1.1, �29�
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3

q

D(q)

~
D(q)

(a)
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q
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~

FIG. 1. �Color online� �a� Multifractality at criticality �T
=0.79�: Generalized dimensions D�q� ��� and D̃�q� ��� associated
to typical and disorder averaged values �Eqs. �14� and �21��. �b�
Monofractality in the high-temperature phase �T=2�: D�q�= D̃�q�
= 3

2 �see Eq. �13��.
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D̃�3� � 0.9 �30�

and for q=10

D�10� � 0.9, �31�

D̃�10� � 0.3. �32�

The limit q→� will be discussed more precisely below
�see Eq. �39��.

Finally, for q�0, we find that Yq
typ�L� and Yq�L� diverge

more rapidly than the power laws of Eqs. �14� and �21�, i.e.,

D�q � 0� = + � . �33�

This can be understood in the delocalized phase T�Tc where
it is also true, since for the free Gaussian probability
wT=��r���e−�r��2/L /L3/2 at T=� leads to exponential diver-
gence of Yq in the negative region q�0. This finding for our
“dynamical” model is thus very natural, but is a major dif-
ference with the Anderson localization cases where the gen-
eralized exponents D�q� are finite for q�0.

IV. RESULTS FOR THE SINGULARITY SPECTRUM f„�…

To measure the singularity spectrum f���, we have fol-
lowed the method of the q measures proposed in �48�. As
explained above, in the negative region q�0, our model
does not lead to power law �see Eq. �33��. As a consequence,
the maximum ��0 , f��0�� of the curve f��� which is at finite
distance in Anderson localization models, is rejected towards
infinity in our case

�0 = + � , �34�

f��0� = D�q = 0� = 3. �35�

Our result for the curve f��� are shown on Fig. 2�a�: It
begins at some �min=D�q= +�� where f��min�=0, it is tan-
gent to the diagonal at �1=D�1��1.5, and asymptotically
goes to f�+��=D�0�=3.

The q values used in our computations and the corre-
sponding ��q� �see Eq. �20�� are shown on Fig. 2�b�.

To measure better the minimal exponent
�min=D�q= +�� where f��� vanishes f��min=0�=0, we have
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FIG. 2. �a� Singularity spectrum f���: Starting at some �min

=D�q= +���0.77 where f��min�=0, it is tangent to the diagonal
�= f��� at �1=D�1��1.5 and asymptotically goes to f�+��
=D�0�=3. �b� Corresponding curve ��q�: Diverging at q→0, it
goes through the point ��q=1�=D�1��1.5 and tends to �min

=D�q= +�� as q→�.
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FIG. 3. �Color online� Histogram of ln Y2�L� at criticality
�Tc=0.79�. �a� Probability distribution PL�ln Y2� for L=6, 12, 18,
24, 36, 48, 60, 72, 84, and 96. �b� Rescaled distributions
ln GL�u=ln Y2�L�−ln Y2�L��: The exponential tail of Eq. �41� is
clearly visible, the corresponding slope being x2�1.
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studied the statistics of the maximal weight in each sample
�Eq. �8��

wL
max = maxr� �wL�r��� . �36�

The disorder-averaged value of its logarithm gives

ln wL
max � − 0.77 ln L . �37�

The first moment involves a similar value

wL � L−0.75 �38�

so our conclusion is that the minimal exponent in a typical
sample is around

�min = D�q = + �� � 0.77. �39�

V. RESULTS FOR PROBABILITY DISTRIBUTIONS

A. Probability distributions of the Yq„L…

To understand the difference between the generalized ex-
ponents associated to typical and averaged values �Eq. �26��,

we now consider the probability distributions of Yq�L� over
the samples. Our results for the histograms of ln Y2�L� for
various L at criticality are shown on Fig. 3�a�. Remarkably,
as L grows, this distribution simply shifts along the x axis
with a fixed shape, as also found in �21,26� for I.P.R.s at
Anderson transitions. As in Eq. �22�, we may therefore write

ln Yq�L� = ln Yq�L� + u , �40�

where u is a random variable of order O�1� in the limit L
→�. The probability distribution G2�u� of u=ln Y2�L�
−ln Y2�L� is shown on Fig. 3�b� for various L. It clearly
develops an exponential tail as u→�

GL→��u� 

u→�

e−xqu. �41�

As stressed in �21,26�, the ratio y=Yq�L� /Yq
typ�L�=eu then

presents the power-law decay
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FIG. 4. �Color online� Histogram of ln Y2�L� in the high-
temperature phase �T=2�. �a� Probability distribution of PL�ln Y2�
for L=6, 12, 18, 24, 36, 48, and 60. �b� The distributions GL�u� of
the rescaled variable u= �ln Y2�L�−ln Y2�L�� / �� ln Y2�L�� become
Gaussian.
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FIG. 5. �Color online� Histogram of the entropy
sL=−�r�wL�r��ln wL�r�� at criticality �T=0.79�. �a� Probability distri-
bution QL�s� for L=6, 12, 24, 36, 48, 60, 72, 84, and 96. �b�The
distributions HL�z� of the rescaled variable z= �sl−sL� /�sL are
clearly asymmetric.
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��y �
Yq�L�

Yq
typ�L� �

y→�

1

y1+xq
. �42�

Whenever xq�1, the corresponding generalized dimensions

differ D̃�q��D�q� �Eq. �26��: The decay of the averaged
value Yq�L� is then determined by the finite-size cutoff of the
power-law tail. Our results for the histograms of Yq�L� for
q=3,4 , . . . are similar to the results shown for q=2 on Fig. 3.

For comparison, we show on Fig. 4�a� the histogram of
ln Y2�L� in the delocalized phase at T=2: As L grows, the
width shrinks around the averaged value ln Y2�L��
−�3/2�ln L. The corresponding rescaled distribution shown
on Fig. 4�b� tends towards the Gaussian distribution.

B. Probability distributions of the last-monomer entropy
sL=−�r� wL„r�…ln wL„r�…

Since the last-monomer entropy sL is closely related to the
Yq�L� �Eq. �15��, we have also computed its histogram over
the samples both at criticality �Fig. 5� and in the delocalized
phase at T=2�Tc �Fig. 6�. Again, the rescaled distribution is

Gaussian for T�Tc �Fig. 6�b��, and strongly asymmetric at
criticality �Fig. 5�b��.

VI. FINITE-SIZE SCALING IN THE CRITICAL REGION

For Anderson transitions, finite-size scaling involves the
multifractal spectrum at criticality but a single correlation
length exponent � �see the reviews �23,24��. In this section,
we thus try the following finite-size scaling form in the criti-
cal region

Yq�L,T� = L−�̃�q����T − Tc�L1/�� . �43�

For T�Tc, the convergence to finite values Yq�L=� ,T� in
the L→� limit yields

Yq�L = �,T� = �Tc − T��̃�q� with �̃�q� = ��̃�q� . �44�

This relation between the multifractal exponents �̃�q� and the

critical exponents �̃�q� and � is well known for the Anderson
transitions �see the reviews �23,24��. Our results for T�Tc
are shown on Fig. 7 for �a� q=2 and �b� q=3 with the value
�=2. This value is one of the two values ��2 and ��4
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FIG. 6. �Color online� Histogram of the entropy
sL=−�r�wL�r��ln wL�r�� in the high temperature phase �T=2�. �a�
Probability distribution QL�s� for L=6, 12, 24, 36, 48, and 60. �b�
The distributions HL�z� of the rescaled variable z= �sl−sL� /�sL be-
come Gaussian.
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FIG. 7. �Color online� Finite-size scaling �T�Tc� of vq

=L�̃�q�Yq as a function of x= �T−Tc�L1/�, see Eq. �43�, with the
value �=2 and for the sizes L=12���, 24���, 36���, 48���, and
60���. �a� q=2; �b� q=3.
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found previously in the literature for other observables
�39,40,43�.

For T�Tc, the results of the finite-size scaling form of
Eq. �43� are shown on Fig. 8 for q=2 with the value �=2.
Note that the matching between the finite-size scaling form
of Eq. �43� and the asymptotic behavior in the delocalized
phase �Eq. �13�� yields a diverging amplitude A�T� in Eq.
�13� for q�1

Yq�L,T � Tc� �
A�T�

L�3/2��q−1� �45�

with

A�T� � �T − Tc�−��q−1��3/2−D̃�q��.

Our data thus points towards a correlation length expo-
nent ��2 above and below Tc, i.e., toward a value very

close to the general lower bound ��2/d=2 of disordered
systems �49�.

VII. CONCLUSION

In this paper, we have found that the directed polymer in
a random medium of dimension 1+3 exhibits multifractal
properties at the critical localization-delocalization transi-
tion. We have numerically studied the statistics of the Yq�L�
�see Eqs. �8� and �10��, which are the dynamical analogs of
the inverse participation ratios of Anderson localization
quantum models �23,24,26�. Our results are very close to the
Evers-Mirlin scenario �21,26� for the Anderson transitions
case. In particular, we have found that the generalized di-

mensions D�q� and D̃�q� for typical and disorder averaged
values coincide for q�qc�2 but differ for q�qc, and that
the probability distributions of y=Yq�L� /Yq

typ�L� over the
samples becomes scale invariant with a power-law tail
1 /y1+xq. We have also measured the corresponding typical
singularity spectrum f���, which starts at the value �min

=D�+���0.77, and ends at �max= +�. Off-critical results
lead, through a finite size scaling analysis, to a value ��2
for the correlation length exponent on both sides of the tran-
sition.

Finally, our numerical results, in particular the scale in-
variant shape of the histogram of ln Y2�L� shown on Fig.
3�a�, strongly support the equality Tc=T2�d=3� �see Eq. �5�
and the corresponding discussion�.

Since the directed polymer in a random medium can be
mapped onto a growth model in the Kardar-Parisi-Zhang uni-
versality class �30�, multifractality is also expected to show
up at the critical point of these growth models. More gener-
ally, the present study confirms that it may be interesting to
characterize the critical points of quenched disordered mod-
els by their multifractal properties.
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